
Lecture 19

The An-Kleinberg-Shmoys Algorithm
for the Traveling Salesman Path
Problem∗

19.1 The TSP and TSPP Problems

We will assume throughout that we are given a complete undirected graph G = (V,E)
with edge costs c : E → R

≥0 and that these edge costs satisfy the Triangle Inequality
(c(u,w) ≤ c(u, v) + c(v, w) for all u, v, w ∈ V). The shortest path costs in this graph are
then a metric. Recall that a Hamiltonian cycle is a cycle than includes each vertex exactly
once and a Hamiltonian path is a path that visits each vertex exactly once.

Now, we define the traveling salesman problem and a couple of its variants

Traveling Salesman Problem (TSP) Find the cheapest Hamiltonian cycle.

Traveling Salesman Path Problem (TSPP) Find the cheapest Hamiltonian path. We
can assume without loss of generality that we are given a pair of vertices s and t that we
want our path to begin and end at. We can use an algorithm for this case in the general
case by running it on all n2 pairs of vertices.

Asymmetric Traveling Salesman Problem (ATSP) For a complete undirected graph
that may have different costs on (u, v) and (v, u) edges, find the cheapest Hamiltonian cycle.

19.2 Previous Results

Previous results for all three problems are summarized in this table:

*Lecturer: Ryan O’Donnell. Scribe: David Witmer.

1

TSP TSPP ATSP
Best approx factor 3/2 [Chr76] 5/3 [Hoo91] Θ(log n) [FKR95]
LP gap ≥ 4/3− o(1) [HK70] ≥ 3/2− o(1) [HK70] ≥ 4/3− o(1) [HK70]

≥ 2− o(1) [CGK06]
LP gap conjecture ≤ 4/3 ≤ 3/2 ?

There have also been several recent breakthroughs:

• An O(log n/ log log n)-approximation algorithm for ATSP [AGM+10]

• A ≤ 3/2− ε0-approximation algorithm (ε0 constant) for graphic TSP, which takes an
input graph with unit-length edges and uses as a metric the shortest path metric on
the graph [OGSS11]

• A 1.461-approximation algorithm for graphic TSP and a 1.586-approximation algo-
rithm for graphic TSPP [MS11]

• Mucha improved this analysis to get a 1.444-approximation algorithm for graphic TSP
and a 1.583 approximation algorithm for graphic TSPP [Muc11]

• There has also been work on the cubic TSP problem, which is TSP on graphs in which
all vertices have degree 3 [GLS05], [BSvdSS11]

• A 1+
√
5

2
-approximation algorithm for TSPP [AKS11]

We will cover the AKS algorithm. We will not give a 1+
√
5

2
-approximation, but will show

a 5/3 approximation algorithm this class and a 1.6583-approximation next class using the
major ideas of the paper. These two lectures will cover sections 3.1 through 3.3 of [AKS11].

19.3 A 2-Approximation for TSPP

We will start by giving a 2-approximation for TSPP:
Compute a minimum spanning tree (MST). Note that its cost must be less than or equal

to OptTSPP because any Hamiltonian path is also a spanning tree. We can then walk from
s to t on the MST visiting all vertices using each edge at most twice. This gives us a
2-approximation.

To deal with duplicate edges, we can “shortcut” to the next vertex in the MST walk
that we haven’t yet visited. This will only improve our cost by our assumption that the
shortest-path distances are a metric.

It remains to argue that we visit each edge in this path at most once. Consider adding
a dummy edge with 0 cost from s to t. Then double each edge except for the dummy edge
and the edges on the s-t path in the MST, replacing each with two identical copies. Then
each vertex has even degree and the graph is Eulerian. In any Eulerian graph, there exists
an Eulerian tour, which is a cycle containing each edge exactly once. Dropping the dummy
s-t edge from the cycle gives an s-t path.

2

To get a better approximation algorithm, we would like to find a cheaper way to get a
graph of even degere. We have the following idea from [Hoo91]: Take the MST as before.
We want s and t to have odd degree and all other vertices to have even degree. We need to
“fix” the parity of any odd-degree vertex that is not s or t. Since the sum of the degrees in
any graph is even, we must have an even number of of vertices that need to fixed. See Figure
19.1 for an example. We can therefore add a minimum cost matching on these vertices to
fix them and then show that this matching doesn’t cost too much. Christofides gave a 3/2-
approximation algorithm for TSP by showing that the matching cost is less than or equal
to 1

2
OptTSP [Chr76]. Hoogeveen gave a 5/3-approximation algorithm for TSPP by showing

that the matching cost is less than or equal to 2
3
OptTSPP [Hoo91].

Figure 19.1: A tree with an even number of odd parity “bad” vertices

19.4 LP Relaxations for TSP and TSPP

19.4.1 Solving the LPs

In 1970, Held and Karp gave an LP relaxation for TSP [HK70]:

min c(x) :=
∑
e∈E

cexe

s.t. x(∂S) ≥ 2 ∀ S (V, |S| > 1

x(∂S) = 2 ∀ S (V, |S| = 1

xe ≥ 0 ∀e ∈ E

Recall that ∂S = E(S, S̄) is the set of edges with one endpoint in S and one endpoint in S̄
and x(F) =

∑
e∈F xe.

3

Note that this LP has exponential size. We can still solve it in polynomial time using the
ellipsoid algorithm if we have a separation oracle. Thinking of the xe’s as edge capacities,
we can find the min cut in polynomial time. If the min cut is ≥ 2, the x(∂S) ≥ 2 condition
must hold for all valid S. The rest of the constraints are easy to check in polynomial time.

Next, we give an LP relaxation for TSPP:

min c(x)

s.t. x(∂S) ≥ 1 for separating cuts, i.e. |S ∩ {s, t}| = 1, with |S| > 1

x(∂S) ≥ 2 for non-separating cuts with |S| > 1

x(∂S) = 2 for cuts with |S| = 1

xe ≥ 0 ∀e ∈ E
Note that

x(E) =
2(n− 2) + 2

2
= n− 1,

ensuring that any integral solution is a Hamiltonian path. Also, this polytope is contained
within the MST polytope.

Once again, we need a separation oracle to solve this LP. We take the xe’s to be edge
capacities as before and add an additional s-t edge with capacity 1. If the min cut ≥ 2,
the two ≥ constraints are satisfied and the other constraints can be checked as before in
polynomial time.

19.4.2 Integrality Gaps

We will now show graphs demonstrating integrality gaps of 3/2 and 4/3 for the TSPP and
TSP LP relaxations, respectively.

For TSPP, consider Figure 19.2. Any s-t path containing all of the edges is going to have
about 3` edges in it. However, we can find a feasible solution to the LP with 1/2 on the
edges out of s and t and the two vertical edges and 1 on all other edges to see that LPOpt
is about 2`. This shows that the integrality gap is at least 3/2.

Figure 19.2: A graph showing the 3/2 integrality gap for TSPP

4

A similar graph with an extra row of vertices demostrates the 4/3 integrality gap for
TSP.

19.4.3 The Spanning Tree Polytope

Consider the spanning tree polytope:

x(E) = n− 1

x(∂S) ≥ |S| − 1 ∀ S (V, |S| > 1

x(∂S) ≥ 1 ∀ S (V, |S| = 1

xe ≥ 0 ∀e ∈ E

The TSPP polytope is contained within the intersection of the spanning tree polytope
and the set {x | x(∂{s}) = x(∂{t}) = 1}. Since the spanning tree polytope is integral
and this polytope is the convex hull of these integral solutions, we can write any TSPP LP
solution as a convex combination of spanning trees in which s and t are leaves. That is, for
non-negative λi that sum up to 1

x =
∑
i≤(n

2)

λi1Ai

where Ai is a spanning tree in which s and t are leaves. Furthermore, we can find this linear
combination efficiently.

19.5 The AKS Algorithm

Now we state the AKS algorithm.

1. Solve the TSPP LP relaxation to get a solution x∗.

2. Write x∗ as a convex combination of spanning trees Ai that have s and t as leaves to
get x∗ =

∑
i≤(n

2)
λi1Ai

.

3. Pick a spanning tree A at random from this distribution (choose Ai with probability
λi).

4. Let T = TA be the set of vertices in A whose degree parity needs to be fixed. As
described above, |T | is even.

5. Take M to be the minimum cost matching on T .

6. Then A∪M has an Eulerian path from s to t. Shortcut to avoid taking the same edge
twice and return the resulting path.

5

This algorithm can be derandomized by trying all
(
n
2

)
of the Ai’s.

We want to show that the expected cost of this algorithm is strictly less than 5/3. Note
that

E[cost(A)] =
∑
i

λicost(Ai) = c(x∗) ≤ Opt.

In the next lecture, we will get our desired result by showing that EA[cost(M)] ≤ .6853̄c(x∗),
giving an 1.6583̄-approximation algorithm. In this lecture, we will show that EA[cost(M)] ≤
2
3
c(x∗) to get a 5/3-approximation algorithm.

19.5.1 T -Joins

First, we need to define some more terminology.

Definition 19.1. Given a subset of vertices T , a T -join is a subgraph such that all the
vertices of T have odd degree and all other vertices have even degree.

A T -join consists of |T |/2 edge-disjoint paths connecting pairs on T plus cycles. In the
metric case, the cheapest T -join is a matching.

We can find the cheapest or most expensive T -join in polynomial time because the T -join
polytope is integral:

y(∂S) ≥ 1 for all odd-T -cuts, i.e. cuts such that |S ∩ T | is odd

ye ≥ 0 ∀e ∈ E
ye ≤ 1 ∀e ∈ E

Theorem 19.2. [EJ73] This polytope is integral.

We call any y satisfying these conditions a fractional T -join. We can remove the ye ≥ 1
constraint. Any y satisfying the remaining constraints is called a fractional T -join dominator.

Given these definitions and facts, we can then write

cost of cheapest matching on T = cost of cheapest T -join

= cost of cheapest fractional T -join

≤ cost of any fractional T -join

≤ cost of any fractional T -join dominator.

19.5.2 A 5/3-Approximation Algorithm for TSPP

In the end, our goal is to give a mapping from (x∗, A) to a fractional T -join dominator
y such that EA[c(y)] ≤ .6583̄c(x∗). By the above discussion, EA[cost(M)] ≤ EA[c(y)], so
this will give us a 1.6583̄-approximation algorithm as desired. For today, we will show that
EA[c(y)] ≤ 2

3
c(x∗).

We’ll try a couple of ideas:

6

Idea 0 Set y = x∗. x∗ is a fractional T -join dominator by the constraints of the TSPP LP
relaxation. However, this would only give us a 2-approximation. What happens if we choose
y = 1

2
x∗? This will not work since the y(∂S) ≥ 1 constraint could be violated for separating

cuts. Note that for TSPs, this would work and would give a 3/2-approximation.
What about y = 1A? This will work, since A is a tree.
We need the following proposition to analyze our next idea:

Proposition 19.3. If S is an s-t-separating odd-T -cut, then 1A(∂S) ≥ 2.

Proof. Recall that s and t are leaves in A. S can be partitioned into vertices in S ∩ T , a
set containing either only s or only t, and a set containing no vertices of T . Because the
cut is an odd-T -cut, there will be an odd number of vertices in the first set. Each will have
odd degree becasuse they are al in T . The sum of the degrees of vertices in the first set is
therefore odd. Since s and t are leaves, the degree of the second set i 1. Since all vertices in
the third set are not in T , the sum of their degrees must be even. So, we get that the sum
of the degrees of vertices in S is an odd number plus 1 plus an even number, which must be
even. This implies that |∂S| is even. A is a spanning tree, so it is connected. It must then
be the case that |∂S| ≥ 2.

An example cut is shown in Figure 19.3.

Figure 19.3: A tree with the vertices of T circled and a cut satisfying the conditions of the
proposition shown

Idea 1 Set y = 1
3
x∗ + 1

3
1A. Then we would have that EA[cost(y)] = 2

3
c(x∗) as desired. We

just need to show that y is a fractional T -join dominator. Consider S non-separating. Then

y(∂S) =
1

3
x∗(∂S) +

1

3
1A(∂S) ≥ 2

3
+

1

3
= 1

7

by the LP constraints and the fact that A is a tree. If, on the other hand, S is separating
and odd, we have that

y(∂S) ≥ 1

3
+

2

3
= 1

by the proposition and the LP constraints.
Therefore, we have a 5/3-approximation for TSPP.

8

Bibliography

[AGM+10] Arash Asadpour, Michel X. Goemans, Aleksander Madry, Shayan Oveis Gha-
ran, and Amin Saberi. An o(log n/ log log n)-approximation algorithm for the
asymmetric traveling salesman problem. In Proceedings of the Twenty-First An-
nual ACM-SIAM Symposium on Discrete Algorithms, SODA ’10, pages 379 –
189, 2010. 19.2

[AKS11] Hyung-Chan An, Robert Kleinberg, and David B. Shmoys. Improving
christofides’ algorithm for the s-t path tsp. CoRR, abs/1110.4604, 2011. 19.2

[BSvdSS11] Sylvia Boyd, Rene Sitters, Suzanne van der Ster, and Leen Stougie. Tsp on
cubic and sub-cubic graphs. In Proceedings of the 15th Conference on Integer
Programming and Combinatorial Optimization, IPCO ’11, 2011. 19.2

[CGK06] Moses Charikar, Michel X. Goemans, and Howard Karloff. On the integrality
ratio for the asymmetric traveling salesman problem. Mathematics of Operations
Research, 31:245 – 252, 2006. 19.2

[Chr76] Nicos Christofides. Worst-case analysis of a new heuristic for the travelling
salesman problem. Technical Report 388, CMU Graduate School of Industrial
Administration, 1976. 19.2, 19.3

[EJ73] Jack Edmonds and Ellis L. Johnson. Matching, euler tours and the chinese
postman. Mathematical Programming, 5:88 – 124, 1973. 19.2

[FKR95] Alan Frieze, Richard M. Karp, and Bruce Reed. When is the assignment bound
tight for the asymmetric traveling-salesman problem? SIAM J. Comput., 24:484
– 493, June 1995. 19.2

[GLS05] David Gamarnik, Moshe Lewenstein, and Maxim Sviridenko. An improved
upper bound for the tsp in cubic 3-edge-connected graphs. Operations Research
Letters, 33:467 – 474, 2005. 19.2

[HK70] Michael Held and Richard M. Karp. The traveling-salesman problem and min-
imum spanning trees. Operations Research, 18:1138 – 1162, 1970. 19.2, 19.4.1

[Hoo91] J.A. Hoogeveen. Analysis of christofides’ heuristic: Some paths are more difficult
than cycles. Operations Research Letters, 10(5):291 – 295, 1991. 19.2, 19.3

9

[MS11] Tobias Mömke and Ola Svensson. Approximating graphic tsp by matchings.
CoRR, abs/1104.3090, 2011. 19.2

[Muc11] Marcin Mucha. Improved analysis for graphic tsp approximation via matchings.
CoRR, abs/1108.1130, 2011. 19.2

[OGSS11] Shayan Oveis Gharan, Amin Saberi, and Mohit Singh. A randomized rounding
approach to the traveling salesman problem. In 52nd Annual IEEE Symposium
on Foundations of Computer Science, FOCS ’11, 2011. 19.2

10

	The An-Kleinberg-Shmoys Algorithm for the Traveling Salesman Path Problem
	The TSP and TSPP Problems
	Previous Results
	A 2-Approximation for TSPP
	LP Relaxations for TSP and TSPP
	Solving the LPs
	Integrality Gaps
	The Spanning Tree Polytope

	The AKS Algorithm
	T-Joins
	A 5/3-Approximation Algorithm for TSPP

